
Barrington’s Theorem

Arefin Huq

October 25, 2010

1 Overview

Recall that a branching program is a directed acyclic graph with the following properties:

1. Every edge is labeled 0 or 1.

2. Every node that has no outgoing edges is labeled with an output value (e.g. accept
or reject).

3. Every node that has outgoing edges is labeled with a binary variable xi and has at
least one outgoing edge labeled 0 and at least one outgoing edge labeled 1.

4. One node is designated the start node.

Note that a given input variable xi can appear many times as a node label. If we require
that non-output nodes have out-degree 2 then the branching program is deterministic, and
a given setting of the {xi} determines a single path through the program.

A constant-width branching program is a branching program where all the nodes are
organized into layers such that the following additional properties hold:

1. The start node is in the first layer.

2. All the output nodes are in the last layer.

3. Each layer (except the first) only has incoming edges from the previous layer.

4. Each layer (except the last) only has outgoing edges to the next layer.

5. The number of nodes in any layer is at most a constant.

The maximum number of nodes in any layer is the width of the branching program.
It was conjectured that functions such as majority require superpolynomial size constant-
width branching programs. This conjecture was disproved by the following theorem:

1



Theorem 1 (Barrington). A language L has a polynomial size, width 5 branching program
iff L ∈ NC1.

We will prove that any L ∈ NC1 has a polynomial size width 5 branching program.
The other direction is much easier and is a homework problem. To prove this direction we
will establish properties of a related class of programs called permuting branching programs
and show how to turn a permuting branching program into a branching program. First we
review some properties of permutations.

2 Properties of Symmetric Groups

2.1 Definition of a Group

Recall that a group is a set A combined with an operation · with the following properties:

1. (Closure) For all x, y ∈ A, x · y is in A.

2. (Associativity) For all x, y, z ∈ A, x · (y · z) = (x · y) · z.

3. (Identity) There is an e ∈ A such that for all x ∈ A, e · x = x · e = x.

4. (Inverses) For each x ∈ A there exists a y ∈ A such that x · y = y · x = e.

For convenience we will usually drop the operator symbol (·) and denote x · y by xy.

2.2 The Symmetric Group Sn

Let [n] denote the set {1, 2, . . . , n}. A permutation of [n] is a function σ : [n] → [n] that
maps each element of [n] to a unique element of [n]. For example if σ(1) = 3, σ(2) =
2, σ(3) = 1 then σ is a permutation of [3]. It is easy to see that every permutation on [n]
is a bijection from [n] to itself, and vice versa.

Sn is called the symmetric group on n elements and is defined to be the set of all
permutations of [n], combined with function composition as the group operation. Clearly
the composition of two functions from [n] to itself is also a function from [n] to itself. It
can be seen that Sn satisfies the group properties:

1. Closure: The composition of two bijections is a bijection.

2. Associativity: Function composition is associative.

3. Identity: The permutation σ(i) = i is the identity.

4. Inverses: Every bijection can be inverted.

2



2.3 Cycles

Consider the following permutation on 6 elements:

σ =

(
1 2 3 4 5 6
5 2 6 1 4 3

)
The notation indicates that each element in the top row is mapped to the element

directly beneath it in the bottom row. Consider what happens to the element 1 as this
permutation is applied repeatedly: σ(1) = 5, σ(5) = 4, σ(4) = 1, or put another way:
1 → 5 → 4 → 1. Likewise, 5 → 4 → 1 → 5, etc. We say that the elements 1, 5, 4 form
a 3-cycle and we denote this cycle as (154). Note that (541) and (415) denote the same
cycle. In general (xi . . . xn) denotes the cycle x1 → x2 → . . . xn → x1.

Now consider the first element of [6] not contained in this cycle. This is 2 and we
discover that 2 is in a cycle by itself: (2). Proceeding in this fashion we discover one more
cycle: (36). Since any single element cycle has no effect, we can ignore the cycle (2) and
write σ as the product (i.e. composition) of cycles as:

σ = (154)(36)

Notice that the two cycles are disjoint, that is they contain no elements in common.
In fact, every permutation can be written as the product of disjoint cycles, by using the
procedure outlined above.

2.4 Conjugates

If A is a group and x ∈ A, we say for every y ∈ A that the element yxy−1 is a conjugate
of x. Observe that if a is a conjugate of b then b is a conjugate of a.

Lemma 1. If σ, τ ∈ Sn are both k-cycles then they are conjugates of each other. In other
words, there exists γ ∈ Sn such that τ = γσγ−1.

Proof. Let σ = (s1s2 . . . sk) and τ = (t1t2 . . . tk). Consider the following permutation:

γ =

(
s1 s2 . . . sk
t1 t2 . . . tk

)
This gives rise to the following equations:

σ(si) = si+1

τ(ti) = ti+1

γ(si) = ti

γ−1(ti) = si

3



where in the first two equations (i+ 1) is computed mod n.
Now consider the action of γσγ−1:

γ(σ(γ−1(ti))) = γ(σ(si)) = γ(si+1) = ti+1 = τ(ti)

Therefore τ = γσγ−1. Note that γ is not unique since the expression of σ and τ as cycles
is not unique.

2.5 The Commutator

If A is a group and for some a, b ∈ A it is the case that ab 6= ba then we say that A is not
commutative. If we take the expression ab = ba and multiply both sides on the right by
a−1b−1 we get aba−1b−1 = e. The term aba−1b−1 is called the commutator of a and b, and
as we just saw, ab 6= ba ⇐⇒ aba−1b−1 6= e.

3 Permuting Branching Programs

A k-permuting branching program (k-PBP) is a sequence of instructions such as the fol-
lowing:

(xi0 , αi0 , βi0)

...

(xim , αim , βim)

where xij is one of the input variables, and αij , βij are cyclic permutations in Sk. The
jth instruction evaluates to αij if xij is 0 and βij if xij is 1. That is, each instruction
outputs one of two different permutations based on the value of xij . The output of the
program is the product of the permutations produced by each instruction. Let p be a
k-PBP and let p(x) denote the output of p on input x = (x1, . . . , xn).

Definition 1. We say that p σ-accepts a language B if p(x) = σ whenever x ∈ B and
p(x) = e (the identity permutation) whenever x /∈ B.

The following theorem states that if σ is a k-cycle we can replace σ with another k-cycle.

Lemma 2. If p σ-accepts B, σ is a k-cycle, and τ is another k-cycle, then there is another
k-PBP of the same size that τ -accepts B.

Proof. Use Lemma 1 to find γ such that τ = γσγ−1. Multiply both permutations in the
first instruction of p by γ and multiply both permutations in the last instruction of p by
γ−1.

4



Lemma 3. If p σ-accepts B there is another k-PBP of the same size that σ-accepts B.

Proof. Use Lemma 2 to create a k-PBP q of the same size that σ−1-accepts B. Then
multiply both permutations in the last instruction of q by σ.

Lemma 4. If p σ-accepts B and q σ-accepts C then there is a permuting branching program
of size 2(size(p) + size(q)) that στσ−1τ−1-accepts B

⋂
C.

Proof. Use Lemma 2 to get a σ−1-acceptor for B and a τ−1-acceptor for C. Combine them
in the order στσ−1τ−1.

It may happen that στσ−1τ−1 is the identity permutation. The following lemma re-
solves this issue:

Lemma 5. There are cyclic permutations in S5 that do not commute.

Proof. (12345) and (13254) have this property. Their commutator is a cyclic permutation.

4 Conclusion of Proof

Suppose L ∈ NC1 is decided by a depth d circuit C. Transform the circuit to C ′ so that it
only contains AND and NOT gates. Use the preceding section to construct a 5-PBP that
computes C ′ with length at most 4d. Since d = O(log n) this gives a polynomial size PBP.

Turn the 5-PBP p into a width-5 branching program r as follows: each instruction in
(xij , αij , βij ) in p is a layer in r. Connect the outgoing edges labeled 0 based on αij and
the outgoing edges labeled 1 based on βij . Create a new start node and connect it to any
of the nodes in the first layer. Mark the corresponding node in the last layer as rejecting
and mark all the other nodes in the last layer as accepting.

5 Acknowledgments

This material is adapted from [1], [2], [3].

References

[1] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, 1 edition, April 2009.

[2] Ravi B. Boppana and Michael Sipser. The complexity of finite functions. pages 757–804,
1990.

[3] Charles Pinter. A Book of Abstract Algebra. McGraw-Hill Publishing Company, 1982.

5


